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In this expository paper it is shown how some of the main ideas of the theory of
best approximation have been generalized to yield new methods and results in
optimization theory and how they have continued to develop within the framework
of optimization theory.

We recall that in a normed linear space (nls) F the distance from an
element X oE F to a subset G of F is the number

(1)

any go E G for which this inf is attained, i.e., such that

(2)

is called a (or an element of) best approximation of X o in G, or a nearest
point to X o in G, and we shall denote the set of all such go E G by '?G(xo)'

On the other hand, in optimization theory one is concerned, for a given
locally convex space (lcs) F, a subset G of F and a functional
h:F~R= [-ro, +roj, with the number

inf h(G) = inf h(g);
gEG

any go E G for which this inf is attained, i.e., such that

h(go) = inf h(G),
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(3)

(4 )
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is called a solution of the optimization problem (3), or of the program
(G, hlG) and we shall denote the set of all such go E G by YG(h). We shall
assume here, only for simplicity, that all spaces F are real.

Clearly, problem (1) is a particular case of problem (3), by taking, for the
given element X o E F, the functional

(y E F). (5)

Hence the theory of best approximation (tba) may be regarded as a
particular field of applications of optimization theory (ot). This fact has been
observed in the 1960s, following the previous independent development of
the two theories (for some references, see, e.g, the survey papers [38, 17D. In
the 1970s, some books have been written in this spirit [19, 13, 16] and the
same point of view has also appeared in parts of other monographs on ot.
On the other hand, starting with [33], we have suggested a program of work
in the opposite direction, i.e., to show that many methods and results of the
tba are so strong that they can be generalized to yield new methods and
results in ot. Subsequently, this point of view has been also adopted by
others (see, e.g., [49,4 D. In the expository paper [38] we have presented
some of our contributions to the interaction between the tba and ot, up to
August 1979, with special emphasis on the above-mentioned program.

In the present paper we want to show how some of the main ideas of the
tba have been generalized to yield new methods and results in ot and how
they have been developed further within the framework of ot (often by
authors extraneous to the tba). The paper is expository in nature, but it
contains also some new remarks. The intersection of this paper with the
survey paper [38] is minimal. Furthermore, in order to keep the presentation
short, we have omitted some topics (e.g., minimizing sequences, connections
with Hahn-Banach extensions, generalizations of moment problems to
systems) and we have given only some samples of references. Nevertheless,
we hope that the present paper will stimulate the interest of some of the
specialists in the tba for this direction of research.

2

One of the oldest results in the tba is that if G is a finite-dimensional
(linear) subspace of a nls F and Xo E F, then .3'G(xo)7= 0 (see [31] for
references). The proof is based on the fact that G is closed, each ball
B(xo, c) = {y E F Ilixo- yll ~ c} is compact and h of (5) is continuous on
F; for some generalizations, within the tba, see the references in [32].
Cheney and Goldstein [6] have extended this idea to ot, by showing, e.g.,
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that if F is a reflexive Banach space, G a closed subset of F and
h: F ~ R = (-00, +(0) a functional, such that the level sets

(e E R) (6)

are closed (i.e., h is lower semi-continuous = Isc), convex (i.e., h is quasi
convex) and bounded (whence weakly compact), then Y"G(h) =1= 0; more
generally, one can replace (see, e.g., [10, p. 34]) the assumption that all
Sc(h) are bounded by the assumption that h is "coercive" on G, i.e., all
G (J Sc(h) (e E R) are bounded. The observation that for h of (5) we have
Sc(h) = B(xo, e) (e ~ 0), i.e., that the "good" extensions of the balls B(xo' e)
are the level sets Sc(h), plays an important role also in some other extensions
of the tba to ot, as we shall see below.

3

It has been known (see, e.g., [31, p. 90]) that if G is a finite-dimensional
subspace in a nls F, every local minimizer go E G of (5) on G (i.e., such that
(2) holds for G replaced by G (J V(go)' where V(go) is a neighbourhood of
go) is a global minimizer of (5) on G. Rockafellar [28, p. 264] has observed
that this holds if G c F and h: F~ R are convex. Some extensions and some
related results, involving various connectedness properties of G n Sc(h)
(eER), can be found, e.g., in [23, pp.139-140; 25, Chap. IV; 24]. Let us
also mention (see [1, pp. 173-175]) that every local minimizer of hl G is a
global minimizer of h IG if and only if the "level set multifunction"
e~ G n Sc(h) is Isc on {e E RIG n Sc(h) =1= 0}.

4

Another old result of the tba says that if G is a (linear) subspace in a
strictly convex nls F and X o E F, then <9G(xo) is either empty, or a singleton
(see, e.g., [31 D. Extending this to ot, it has been shown (see, e.g., [10, p. 34])
that if G is a convex subset of a Ies F and h: F ~ R is strictly convex on G
(i.e., h(Agl + (1 - A) gz) <Ah(gl) + (1 - A) h(gz) for all YI' Yz E F and
0< A < 1), then Y~(h) is either empty, or a singleton. More generally (see
[25, Theorem 4.2.6]), the same conclusion holds if G is convex and h is
"strictly connected" on G, i.e., for any gl' gz E G, gl =1= gz, there exists a
continuous function p: [0, 1] --+ G such that p(O) = g l' p(l) = gz and
h(p(A)) < max{h(gl)' h(gz)} (0 < A< 1).
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An easy application of a corollary of the Hahn-Banach theorem yields
(see [31, pp. 18-20]) that for XoE F\G, with G a subspace of a nls F, go E G
satisfies go E gcCxo) if and only if there exists lJI E F* (the conjugate space
of F) such that IllJIll = 1, lJI(go - x o) = IIxo- goll, and lJI(g) = 0 (g E G); for
some generalizations, within the tba, see the references in [32]. These charac
terization theorems for the elements of gG(x) show already the importance of
the set

of all "maximal functionals" of go - xo' Since for h of (5) we have (see, e.g.,
[33, Lemma 4.1]) M

gO
-

XO
= i3h(go), the subdifferential of h at go, defined by

(y E F)}, (8)

the "good" generalization of M
gO

-
XO

to ot is the set i3h(go)' Thus, for
example, the following characterization theorem of Psenicnyi-Rockafellar
(see, e.g., [13, pp. 30-31]) is an extension of the above characterization
theorem to ot: For a convex subset G of a lcs F and a continuous convex
h: F ~ R, go E G satisfies go E YcCh) if and only if there exists lJI E F* such
that lJIEi3h(go)' lJI(go)~lJI(g) (gEG). In [33] we have used
systematically the idea of replacing M go - xo by i3h(go)' to obtain new charac
terization theorems for the elements of YG(h).

More generally, for any e ~ 0, the elements go E G satisfying

(9)

are called (see, e.g., [31]) elements of e-approximation of X o in G and the
elements go E G satisfying

h(go) ~ inf h(G) + e, (10)

are called e-solutions of problem (3) (e = 0 is the preceding case). Clearly,
one can extend the characterization of elements of e-approximation, given in
[31, p.163] (which is similar to the above, but with
lJI(go - xo) ~ Ilxo- goll- 8), to a characterization of 8-solutions, replacing
i3h(go) by the e-subdifferential of h at go' defined [5] by

this has been done by Strodiot-Nguyen-Heukemes [48]. It is an interesting
phenomenon that while in the initial version of their paper (report 80/12,
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Univ. of Namur), Section 5 has been devoted to e-approximation, in the final
version [48] any mention of "approximation" has disappeared.

6

For a convex subset G of a nls F and X o E F\G, we have the well known
(see, e.g., [13, p. 62]) duality formula

dist(xo, G) = max IIf'(xo) - sup If'(G)I,
'PeF*,II'PII=1

(12)

where max denotes a sup which is attained. The usefulness of (12) for
applications (see [32]) is due to the fact that for various concrete spaces F
the general form of continuous linear functionals If' E F* is well known and
simple. Using the formula of Ascoli (see [31, p. 24]) on dist(x,H), where H
is a (closed) hyperplane in F, one obtains the geometric interpretation of (9),

dist(xo, G) = max dist(xo' H),
HerG,xo

(13 )

where df;;,xo denotes the collection of all hyperplanes in F which support the
set G and which separate G and xo' This has been extended to ot in [34]
(see, also, [38,42]), but we shall mention here another result. From (13) it
follows easily that

dist(xo, G) = max dist(xo, D),
De@,D=:>G

(14)

where @ denotes the collection of all closed half-spaces in F. This has been
extended to ot by Laurent and Martinet [20], namely, if G is a convex subset
of ales F and h: F ~ R is convex and upper semicontinuous at some go E G
with h(go) < +00, then

inf h(G) = max inf h(D);
De@,D=:>G

in analytical form, (15) is equivalent [41) to

inf h(G) = max inf h(y).
'PeF' yeF,'P(y)<;sup'P(G)

(15 )

(16)

The above-mentioned results of [20,34) give sufficient conditions on G
and h for certain duality formulae (such as (15), (16» to hold. Some
necessary and sufficient conditions for these formulae and other duality
formulae to hold, such as

inf h(G) = max inf h(y), (17)
'PeF' yeF,'P(y)e'P(G)
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or of types (15}-(17) with max replaced by sup, have been given in [41 j, in
terms of "closed," "open," and "nice" separation (in the sense of Klee [15])
of G from the level sets (6) and Ac(h) = {yEFlh(y)<c} (cER); let us
mention that a generalization of closed separation [15] has been used by
Rubinstein (29,30], who has constructed a different general scheme of
obtaining duality theorems for optimization problems. The methods of [41 ]
have been further developed in [42] for the case inf h(F) < inf h(G) (which,
for h of (5), is equivalent to X o E F\G, a natural assumption in the tba), in
[43] for characterizations of solutions go E G of (3) and in [44] to the case
of "surrogate duality" (generalizing [11, 12D, which aims, roughly speaking,
at expressing inf h(G) with the aid of inf heM), with suitable sets M related
to G, such as in Eqs. (15}-(17); a more flexible general theory of surrogate
duality, which encompasses some classical particular cases, involving two
spaces F, X (instead of one space F), has been given in [47]. Thus, we see
that it is actually surrogate duality, rather than Lagrangian duality, which is
used in the tba, and that the methods of the tba, extended to ot, have led to a
richer theory of surrogate duality. For a comparison with Lagrangian
duality, see [35,38,391.

Let us also mention that the similar extension to ot, of some results on
best approximation by "caverns" G in a nls F, has led to the discovery of
some new separation theorems for bounded convex sets in normed linear
spaces [36, 371, which may have interest also for other applications.

7

There are, in the tba, some basic concepts involving best approximation
by G of more than one x E F. For example, a set G in a nls F is called (a)
proximinal, if 3'G(x) * 0 (x E F); (b) semi-Cebysev, if 3'G(x) = 0 or
singleton (x E F); (c) Cebysev, if 3'aCx) = singleton (x E F); (d) almost
Cebysev, if {x E F I3'G(x) = singleton} is at most of the first category in F,
etc. Furthermore, the idea of considering, istead of problem (1) for one fixed
X o E F, a family of problems of type (1), for several x E F, occurs naturally
also when considering properties of the best approximation operator
x ---> 3'G(x) (set-valued or, when G is a Cebysev set, single-valued), e.g., semi
continuity, continuity, etc.

A natural and important extension to at, due to Rockafellar 127J (see also
[14D, is that of parametrization (or perturbation) of the optimization
problem (3); although Rockafellar has not stated explicitly that he arrived at
it from the model of the tba, he had a very good knowledge of this model
(see, e.g., [18]). Simplifying things, parametrization of (3) amounts to
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considering a set of parameters, say X, and a functional ffJ: F X X ---> R, such
that for some Xo E X there holds

h(y) = ffJ(Y, x o)

so (3) becomes the problem

(y E F), (18)

(19)

In this way, problem (3) is "embedded" into the one-parameter family of
optimization problems

f(x)= inf ffJ(g, x)
geG

(x EX); (20)

for example, in the tba, taking X =F and IfI(Y, x) = Ilx - yll for all x, Y E F,
condition (18) is satisfied by h of (5) and we havef(x) = dist(x, G) (x EX).

This method of parametrization, combined with various concepts of
conjugation of functionals, has permitted to define general concepts of dual
problems to (3) and it has turned out that the properties of duality (e.g.,
existence of solutions of the dual problem) are equivalent to properties of
"stability" of problem (19), with respect to small perturbations of the
parameter xo' i.e., to properties (when X is Ics) of the "optimal value
functional" f of (20) at xo' In the particular case of the tba, f has "good"
properties (it is finite, convex, and continuous on X = F) and therefore so do
the dual problems, but for the study of more general problems (3) on a Isc F,
the above-mentioned connections between duality and stability are revealing.

It is clear how the concepts of the tba, involving best approximation by G
of several x E F, extend to ot, with the above method of embedding (e.g., to
proximinality there corresponds the property that for each x E X, problem
(20) has a solution gx E G, etc.). In this direction, let us mention the results
of Baranger-Temam [2] and Lebourg [21 J on the existence of solutions
gx E G of problem (20) for x ranging in a dense (or in a dense Gb ) subset of
X, which generalize known results of the tba. Moreover, this scheme encom
passes also extensions to ot of results on farthest points and of other results
of Banach space theory, e.g., of the Bishop-Phelps theorem (see [5,21,91).

8

One can extend the best approximation operator x ---> 3"G(x) to ot, with the
aid of the above parametrization, defining the "optimization operator"
x ---> YG(lfIx), where, for each x E X, ffJ x: F ---> R is the "partial functional"
defined by ffJx(Y) = ffJ(Y, x) (y E F) (in particular, by (18), ffJxo = h).
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Assuming that X is a topological (usually, a locally convex) space, one can
study, e.g., the semi-continuity of this operator. Another "optimization
operator" has been also considered, namely, h --+ Y~(h), defined on jF
endowed with various concepts of convergence (see, e.g., [51 D. However, let
us observe that this is encompassed by the above scheme, by taking X = jF
and rp(y, h) = h(y) for all y E F, hE jF; indeed, then rph = h, for all hE jf!.

On the other hand, in the tba, the operator G --+ Y'G(xo) from 2F into 2(;,
with an arbitrary fixed X oE F, has been also studied (see, e.g., [22]). The
obvious extension to ot is the operator G --+ eydh), with a fixed h: F --+ j[
(see, e.g., [4 D. This method of keeping h fixed and letting G vary in 2F

, can
be also applied to other problems of ot, e.g., Wriedt [50] has proved that if F
is a lcs and h: F --+ R is continuous convex, with y;'(h) bounded, the
following statements are equivalent: (1) For each nonempty closed convex
set G c F, we have Y~(h) *0; (2) F is a reflexive Banach space and all
level sets (6) are bounded. Also, Wriedt has proved [49, Theorem 1] that if
h: F --+ j[ is quasi-convex, the following statements are equivalent: (1) For
each convex set G c F, Ydh) = 0 or singleton. (2) For each segment G c F,
YG(h) = 0 or singleton. (3) h is "strictly quasi-convex" (in the sense that the
relations Yl'Y2EF, YI'1"'Y2, h(Yl)=h(Y2)=r, 0<,1.<1, imply
h(,1.Yl + (l-,1.)Y2) < r). In these situations, G is perturbed by subsets G' of
F. It is also convenient to consider a one-parameter family {F(X)}XEX of
perturbation subsets T(x) c F, where X is a topological space and T: X --+ 2F

is a multifunction such that T(xo) = G for some X o E X, so (3) is
"embedded" into the family of problems

f(x) = inf h(y)
yEnX)

(x EX), (21 )

for which one can again define dual problems and study duality-stability
relations (see, e.g., [8,45 D, properties of the "optimization operator"
x --+ 'Ynx)(h) [3], etc. Let us observe that this method encompasses the
preceding case, in which G varies in 2F

, by taking X = 2F
, X O = G, and

T(x) = x for all x E X. On the other hand, as has been observed in [40], the
scheme of Rockafellar, with rp: F X X --+ R, encompasses the scheme with a
multifunction T: X --+ 2F

, provided we replace in (3), (18), h by h + XG' where
Xdy) = 0 for Y E G and = +00 for Y E G (which does not alter problems
(3), (19)), and we replace (20) by f(x) = infYEF rp(y, x) (x E X); indeed, then,
for T: X --+ 2F as above, defining rp(y, x) = h(y) + Xnx)(y) for all y E F,
x E X, the modified (20) reduces to (21). This method, applied to the
particular case when X = F, X O= 0 and,

T(x) = G-x (x E F) (22)

and combined with various concepts of conjugation of functional, yields also

640/40/3 7
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problems (16), (17) and other similar problems as particular cases of the
general concepts of dual problems mentioned in Section 7 (see [46 D.

In the particular case when X = F, X o = 0, and F is defined by (22), we
have

f(x) = inf h(g - x)
gEG

(x E F), (23)

which, for h of (5) (with Xo= 0), yieldsf(x) = dist(x, G) (x E X), the case of
the tba; see, e.g., [49] for results on the "optimization operator"
x ~ YG-Ah) = {go E G I h(go - x) = infgEG h(g - x)} - x, for convex G, h.

In the tba, the case when both x E F and G E 2F vary, is also often
considered, e.g., in the problem of characterization of the spaces F such that
each convex set G c F is proximinal, or Cebysev, etc. The obvious extension
to ot is the case when both hand G vary, or, in one-parametric version, the
embedding of (3) into the family of optimization problems

f(x) = inf q>(y, x)
yEr(X)

(x EX), (24)

where q> and F are as above. The properties of the "optimization operators"
(G, h) ~ YG(h) and x ~ '~(X)(q>J have been studied, e.g., in [7,26,51], etc.
Let us observe that, replacing the space F by F X X and defining
Lf: X ~ 2FXX by Lf(x) = (F(x), x) for all x E X, the relation y E F(x) holds if
and only if (y, x) E Lf(x), so (24) becomesf(x) = inf(y.x)E.1(X) q>(y, x), i.e., of
type (21), for problem (19); also, by F(xo) = G, we have Lf(xo) =
(F(xo)' xo) = (G, xo)'
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